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On Weighted Chebyshev-Type Quadrature Formulas 

By Klaus-Jurgen Forster and Georg-Peter Ostermeyer 

Abstract. A weighted quadrature formula is of Chebyshev type if it has equal coefficients and 
real (but not necessarily distinct) nodes. For a given weight function we study the set T( n, d) 
consisting of all Chebyshev-type formulas with n nodes and at least degree d. It is shown that 
in nonempty T(n, d) there exist two special formulas having "extremal" properties. This 
result is used to prove uniqueness and further results for E-optimal Chebyshev-type formulas. 
For the weight function w -- 1, numerical investigations are carried out for n < 25. 

1. Introduction. Let w be a nonnegative weight function on the interval (a, b), 
-oo < a < b < oo, admitting moments mi of all order 

(1.1) m; = xiw(x) dx, j = 0,1,2,-.., m > O. 
a 

We consider (weighted) Chebyshev-type quadrature formulas [7]. These are quadra- 
ture formulas Qn with equal coefficients and real (but not necessarily distinct) 
nodes: 

n 

Q [f ] =c f (xi), -00o < xI X2 x < 00 

(1.2) 
f f(x)w(x) dx = Qn[f I + Rnf ]. 
a 

By this definition, it is possible that some nodes xi are not contained in the interval 
(a, b). Qn has at least degree d (of exactness) if 

(1.3) Rn[Pi] = O, i = 0,1, ..., d, 

where pi, here and throughout this paper, denotes the monomial pi(x):= xi. If 
d > 0, the coefficient c in (1.2) is determined by (1.3): 

(1.4) c=mo/n. 

The maximal possible degree of a Chebyshev-type quadrature formula with n nodes 
is denoted by dn. 

Let, in the following, T(n, d) be the set of all Chebyshev-type quadrature 
formulas with n nodes and at least degree d. One has T(n, d + 1) c T(n, d) and 
T(n, d) c T(kn, d) for every k E N. For n > 2, a simple calculation shows that 
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each set T(n, 2) contains an infinite number of elements. In case of dn > n the set 
T( n, dn) contains only one element, the so-called "Chebyshev quadrature formula in 
the strict sense". Weight functions w which allow such formulas for every n E N are 
rare [7, p. 109]. In case of dn < n the set T(n, d") possibly contains more than one 
element. To select some of these formulas several criteria can be found in the 
literature. 

From a historical point of view it may be obvious to consider such quadrature 
formulas Q 'Pt E T(n, d"), which minimize IRf pd,+ R l among all QE E T(n, d"). 
Such quadrature formulas are called E-optimal [9], [2], [7]. In case of weight 
functions w, which are symmetric with respect to the (finite) interval (a, b), several 
authors have distinguished between symmetric, i.e., xi - a = b - Xni+l for i = 
1,..., n, and unsymmetric formulas with regard to E-optimality [10], [9], [2]. There 
is computational evidence that E-optimal formulas for symmetric weight functions 
are indeed symmetric [7, p. 113]. Gautschi and Yanagiwara [9] have shown that 
symmetry would follow, if E-optimal formulas are unique in T(n, dn). One aim of 
this paper is to prove the uniqueness of E-optimal formulas in general. 

Several authors have proposed other criteria to select special Chebyshev-type 
formulas-necessarily not contained in T(n, d") (see, e.g., [7]). Therefore, it may be 
of interest to study the set T(n, d) in general. If T(n, d) contains more than one 
element, we show that there exists in T(n, d) an infinite number of formulas which 
have pairwise distinct nodes. In this case, there also exists in T(n, d) an infinite 
number of interpolatory quadrature formulas (for definition, see, e.g., [3]). Among 
these interpolatory quadrature formulas there are two unique formulas which have 
several "extremal" properties with respect to all other formulas in T(n, d). By 
proving that the E-optimal formula QnPt is one of the two extremal formulas in 
T(n, dn), we can show various properties of E-optimal formulas. 

The proofs of all theorems can be found in the supplements section of this issue. 

2. E-Extremal Formulas. We call a (Chebyshev-type quadrature) formula Qn E 
T(n, d) E-minimal in T(n, d) and denote it by Qnmin if 

(2.1) Rnd I Pd+lI = min{ Rn[Pd+lI Qn (=e T(n, d)}. 

Correspondingly, we define E-maximal formulas Qn'I E T(n, d) by 

(2.2) R~naX[Pd+1] = max{ R E[Pd+lIIQn e T(n, d)}. 

Therefore, the following inequalities are valid for every Qn E T(n, d): 

Qnm,adx[Pd+l 1 ]< Qn [Pd+l 1 ]< Qn,d [Pd+11 ]- 

Formulas with property (2.1) or (2.2) we call E-extremal. According to the argu- 
ments of Gautschi and Yanagiwara [9] for the existence of E-optimal formulas there 
exist E-minimal and E-maximal formulas in T(n, d) for all d with 

(2.3) 1 < d < dn. 

Remark. In the following we require for d the validity of (2.3), unless noted 
otherwise. 

Our first result is the uniqueness of E-extremal formulas in T(n, d). 
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THEOREM 1. In T(n, d) there exists only one E-minimal formula Q` and only one 
E-maximal formula Q`max Jou~ n,d~ 

Definition (1.2) allows the possibility that some of the nodes coincide. It can be 
shown that E-extremal formulas have multiple nodes. Moreover, the two E-extremal 
formulas can be characterized by a special arrangement of these multiple nodes. To 
describe this arrangement we define for every Chebyshev-type quadrature formula 
Qn the sequence S(Qn) = (Si(Qn))-l as follows: 

{O. if xn+li # xn-i, 

(2.4) Si[(Qn) 1, if xn+1-i= xn-i and i odd, 
-1, if xn+li = xni and i even. 

We speak of a change of sign of the sequence S(Qn) (between Si(Qn) and Si+,(Qn)) 
if 

(2.5) Sign(si(Qn)) = 
-sign(si+,(Qn)) # 0, 

si+l(Qn) Si+2(Qn) Si+- =(Qn) ?0 

THEOREM 2. Let Qn be E-extremal in T(n, d). Then Qn has at most d distinct 
nodes. Moreover, 

(i) Let d < n - 1. A formula Qn is E-extremal in T(n, d) if and only if S(Qn) has 
at least (n - d - 1) changes of sign. In this case the following holds: If the first 
nonzero term of S(Qn) is negative, then Qn is E-minimal. If this term is positive, then 
Qn is E-maximal. If S(Qn) has more than (n - d - 1) changes of sign, then Qn is 
E-minimal as well as E-maximal and T(n, d) contains only Qn. 

(ii) Let d = n - 1. A formula Qn is E-extremal in T(n, d) if and only if S(Qn) has 
at least one nonzero term. If this term is negative, then Qn is E-minimal. If this term is 
positive, then Qn is E-maximal. If S(Qn) has at least one change of sign, then Qn is 
E-minimal as well as E-maximal and T(n, d) contains only Qn. 

Theorem 2 shows that E-extremal formulas are interpolatory quadrature formulas 
(for definition see, e.g., [3]). The following theorem answers the question for other 
interpolatory quadrature formulas in T(n, d) and for formulas with pairwise distinct 
nodes. 

THEOREM 3. Let Qnjd and Q ma be the E-minimal and the E-maximal formula in 
T(n, d). Let 

rE- (Rmnd[Pd+l], 
Rmax 

[Pd+l])' 

Then there exist formulas Qn and Qn in T(n, d) with Rn[pd+l] = R[n[Pd +l =]r and 
(i) Qn has pairwise distinct nodes, 

(ii) Qn has at most (d + 1) distinct nodes. 

In the case of d < n - 1, there exists for each such r even an infinite number of 
formulas with property (i). In the case of d = n - 1 there exists for each such r only 
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one formula Q,, E T(n, d) with Rl Ipd+l] = r and this formula has pairwise distinct 
nodes. 

A first justification for the consideration of E-extremal formulas is the fact that 
their first and their nth node have extremal properties with respect to all Q,, E 
T(n, d). 

THEOREM 4. Let xi be the nodes of a formula Q,, E T(n, d), which is not 
E-extremal. Let x'in and xmac be the nodes of the E-extremal formulas Qmn and 
Qmf in T(n, d). Then 

(i) min > X > xmax 

(i)(ldX min > _ldX 1 > _ldx max. 

Therefore, it is also possible to characterize the E-minimal (E-maximal) formula 
in T(n, d) to be that formula, whose nth node has the largest (smallest) value. 

Furthermore, Theorem 4 may be helpful for the investigation of the question of 
whether all nodes of a formula Qn E T(n, d) are contained in the interval [a, b]. 

The formulas Q` and Qmnm are defined by the extremal property (2.1) and (2.2) 
of their remainder with respect to only one function, the monomial Pd+1. The 
following theorem shows that these extremal properties remain valid for a wide class 
of functions, which contains especially all monomials Pd+ 2k-1 for all k e N. 

THEOREM 5. Let Q mn and Q ma be the E-minimal and the E-maximal formula in 
T(n, d). Then, for allf E Cd+- , f(d+1) > 0, there hold 

(i) Rmnj[f ] = min{Rn[f]IQn e 
(ii) Rnmax[f ] = max{Rn[f] EQn e T(n, d)}. 

Another interpretation of Theorem 5 may be of interest: 
Let Kd+1 denote the Peano kernel of degree d + 1 ([7, p. 112], [3, p. 39]), of a 

formula Qn, in T(n, d) and K min1 resp. K m' the Peano kernels of the same degree 
of the E-extremal formulas Qmi" or Qm" in T(n, d). Theorem 5 implies the 
inequalities 

rdmin(,) < Kdlx < K max (x) 

for all x E R. 

3. E-Optimal Formulas. Our basic result for E-optimal formulas is given in the 
following theorem. 

THEOREM 6. Let n E N and let Q?Pt be E-optimal. Then Q?Pt is E-extremal in 
T(n, dn) 

An E-optimal formula is therefore E-minimal or E-maximal in T(n, dn) and has 
the corresponding properties given in Section 2. 

The first part of Theorem 2 has been proven for E-optimal formulas by Anderson 
and Gautschi [2]. The second part of Theorem 2 reduces all the remaining cases to 
only two formulas, characterized also by the value of the nth node according to 
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Theorem 4. Theorem 3 shows, in particular, the impossibility that different E-ex- 
tremal formulas in T(n, dn) are both E-optimal. This answers the question of the 
uniqueness of E-optimal formulas [2], [7]. 

COROLLARY 1. Let n E N. Then there exists one and only one E-optimal formula 
Qopt 

Therefore, by the result of Gautschi and Yanagiwara [9] mentioned above, it 
follows from Corollary 1 that 

COROLLARY 2. Let the weight function w be symmetric with respect to (a, b) and let 
n E N. Then dn is odd and the E-optimalformula is symmetric. 

Rabinowitz and Richter [11] have shown that E-optimal rules minimize IRJI for 
formulas (1.2) in special function spaces. With the help of Theorem 5, a different 
justification for the consideration of E-optimal formulas is given by the following 
theorem. 

THEOREM 7. Let n E N and QoPt be the E-optimal formula and let f E Cdn+1, 

f(dn+1)> 0. If 

sign(RPt [pdn+l]) = sign(R Pt[f 

then 

IR Pt[f ] I = mint {IR[f IIQ E T(n, dn)} 

4. Numerical Results for the Weight Function w 1. For the weight function 
w 1 there exist Chebyshev formulas in the strict sense for n = 1, 2, .. ., 7 and 
n = 9-see, e.g., [7]. The E-optimal formulas have been computed by Gautschi and 
Yanagiwara [9] for n = 8, 10, 11, 13 and by Anderson and Gautschi [2] for n = 12, 
14, 15, 16, 17. Anderson [1] has shown that these formulas, except for n = 12, are 
definite, i.e., there exists a representation of their remainder term of the form 

fndnPdn(l) 
(4.1) Rn[f] = (d + 1)!f(dn+ ) 

for everyfe Cdn+l. 

The present authors have computed the E-extremal formulas in T(n, dn) for 
n < 25 by a different method with the help of Theorem 2 resp. Theorem 3 [6]. The 
E-optimal formulas for n = 18,...,25 are given at the end of this section. These 
formulas are all definite. Theorem 5 implies that every Qn E T(n, dn) is also definite 
for n < 25, n # 12; for n = 8, 10, 11, 13 see Fbrster [4]. In case of definiteness, the 
comparison of the coefficients of f(dn+l)(t) in (4.1) between the E-minimal and the 
E-maximal formula gives information as to how useful the choice of the E-optimal 
formula is in T(n, dn). These coefficients are listed in Table 1. In every case, the 
E-minimal formula is E-optimal. The numerical results correspond to the interval of 
integration [-1, 1]. 

A conclusion of the above theorems is that the results of Gautschi and Monegato 
[8] and Forster [4] for n = 8, 10, 11, 13 remain valid for all n < 25, n # 12. 
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TABLE 1 

Rmax [ 
Rnd d +lJ 

n 
n d_ Rmintp i Rnd[Pd+I] Rfln [ + 

n n ndPdn+1 

I 1 0.667 E 0 0.667 E 0 1 definite 

2 3 0.178 E 0 0.178 E 0 1 definite 

3 3 0.667 E-1 0.667 E-1 I definite 

4 5 0.339 E-1 0.339 E-1 1 definite 

5 5 0.172 E-1 0.172 E-1 I definite 

6 7 0.102 E-1 0.102 E-1 I definite 

7 7 0.578 E-2 0.578 E-2 I definite 

8 7 0.2o2 E-2 0.541 E-2 2.68 definite 

9 9 0.221 E-2 0.221 E-2 I definite 

10 9 0.119 E-2 0.153 E-2 1.29 definite 

11 9 0.573 E-3 0.155 E-2 2.71 definite 

min 
R1 2 not def inite 

12 9 0.663 E-4 0.121 E-2 18.25 not definite 
R1 definite 

13 11 0.384 E-3 0.440 E-3 1.15 definite 

14 11 0.218 E-3 0.464 E-3 2.13 definite 

15 11 0.102 E-3 0.384 E-3 3.76 definite 

16 11 0.407 E-4 0.352 E-3 8.65 definite 

17 13 0.105 E-3 0.117 E-3 1.11 definite 

18 13 0.656 E-4 0.115 E-3 1.75 definite 

19 13 0.399 E-4 0.108 E-3 2.71 definite 

20 13 0.198 E-4 0.101 E-3 5.10 definite 

21 13 0.613 '1-5 0.860 E-4 14.03 definite 

22 15 0.242 E-4 0.319 E-4 1.32 definite 

23 15 0.159 E-4 0.273 E-4 1.72 definite 

24 15 0.102 E-4 0.298 E-4 2.92 definite 

25 15 0.594 E-5 0.262 E-4 4.41 definite 

COROLLARY 3. Let n < 25 and w 1. Let QnPt be the E-optimal formula and 

Qne T(n, dn). 
(a) If in (1.1) b = -a, then for every m E N, 

0 < ROP't[Pm] < Rj[Pj. 

(b) If n # 12 andf E Cdnl, f(dn+1) > 0 then 

0 < ROPt[f] f< Rn[f] 
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Therefore, these E-optimal formulas satisfy also every optimality criterion of the 
form 

min ai(Rn[ Pi]) |Qn E- T(n, dn)) 
i =dn+ 1 

with any ai > 0 [7, p. 113]. They are, in particular for n # 12, also optimal in the 
sense of Sard [7, p. 112], [4]. 

The E-Optimal Formulas for w 1 18 < n < 25 

n= 18 

-x = 0.956.11589370931681977 W 
X18 

-x2 = -x3 = 0.78339593833119703042 = X 16= x17 
-x4 = 0.58679047283945639018 W x 15 
-x4 = -x = 0. 45756408008040941541 x x13 x14 
-x5 = 0.25737493728377540704 X12 
-X8 = -x9= 0.12068411927871514185 =X1 x= l 

n = 19 

-x = 0.95841522638659246454 x19 
-x= -x= 0.79485226355878236323 = x7 =x 

-X4 = 0.60772484959475892451 X16 
-x= -x6= 0.48688511013054279206 = X14 = x15 
-X7 = 0.29638895564058655907 = xl 

-x 0.16315108328419371742 = 
xII = x12 -x = 0.0 

10 

n = 20 

-x= 0.96051482286129288228 = X 
-x= -x = 0.80496515092537905967 = x8 =x 

-x4 = 0.63049631592920524269 8= X 
-x= -x = 0.50749481899047359478 = x x17 

-x = 0.35906562874648327105 = x16 
8 = = -xlo 0.15625951409613565727 = x = x12 = x13 

n = 21 

-XI = 0.96243015157286074846 = x21 
-x = -x3 = 0.81403490074542027161 = X 19 = x20 
-X4 = 0.65167313907372323093 = X18 
-x = -x6 = 0.52555764207596964732 = X16 = x 

x = 6 0.40559995128245393129 = X15 
-x =- -x0 = 0. 18868995126113857640 X12 = x13 =x14 -x = 0.0 

(continues) 
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(continued) 

n = 22 

-x I. 0.96415710299556983171 = x22 
-x 2= -x3 = 0.82238727412825985167 X20 =X2l 

-X = 0.66864696018494187221 x 9 
-X _X 6 = 0.54600146439908270396 x 17 x 
_X5 0 0.43289922578951637757 = xl 
-x- 

7 
x9 = 0.24362435512429351622 = X14 x 

-x1O 
8 9 018706881618423297318 - X15 

n = 23 

-xI = w 0.96570343338357257096 = X23 
-X2= x3 0.83018849753913168834 = x21 = x22 

x4 0.68178827221824105045 = X20 
-x 5 _x = 0.56773078130524428871 X18 =X9 
-X7= 0.45254730818175202350 1 Xl7 
-x= -x9 = 0.26810913164371012869 = x15 = x 
_x Io= 0.25355181302970919482 = x14 

-X II= -Xl2= 0.0 = X13 

n = 24 

-x 0.96712730714333769553 = X24 
-x2 = -3 = 0.83729311756137103729 = x22 x K23 

-X4 0.69467063974654513014 = X2} 
-x= -x6 = 0.58616217620434405885 = x19 = x20 

7x 7 0.47487624160088429065 = Xl8 
-X8= -x9 = -x o= 0.29353907385470281834 = x15 = x16 x 17 

_Xx II= 0.09382293173785193807 = X14 
-K 12= 0.0 = x13 

n = 25 

-xI 0.96844773854353010676 x25 
-x -x3 = 0.84375871505247479493 = x23 x24 

-X4= 0.70773522849837207585 = x22 
-x= -x6 = 0.601 10284438058970914 = x20 = X 
-x = 0.50135993977793685911 = X19 
-X8 = -x9 = _x1O0 0.31836145542090472915 = 16= = x = =x 
-x l1- 0.16110820932771201152 = x15 
-x 12= -X 13= 0.0 = x14 

5. Examples. Table 1 shows that in case of w 1 the sets T(n, d") for n < 25 and 
dn < n contain an infinite number of elements (see Theorem 3). The same is true for 
the examples computed by Anderson and Gautschi [2] in case of other weight 
functions. The following example shows with the help of Theorem 2 the possibility 
that for dn < n the set T(n, d") contains only one element. 

Let the weight function w be given by w(x):= V1 - x2. The corresponding 
Gauss-formula Gs with 5 nodes and therefore degree 9 is given by (see Szeg6 [12, p. 
344]) 

G5[f] = F + 3f(j + 4f(O) + 3f() ( 2 ) 

Because of m0 = 'n/2 the formula G2 is a Chebyshev-type quadrature formula (1.2) 
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with the twelve nodes 

x = 2 = -X12' 

1 
X2 = X3= X4 =- = -x11 =-X1 =-X9, 

X5 = X6= 0 = -X8= -X7. 

So G. is an element of T(12, 9). By (2.4) the sequence S(G.) is given by 

S(G5) = (0, 1, -1, 0, -1,1, -1, 0, -1, 1, 0) 

and has four changes of sign; see (2.5). Theorem 2(i) shows that T(12, 9) contains 
only the element G.. Furthermore, G. is also the only element of T(12, 8), and G. is 
the E-maximal formula Qm7 in T(12, 7). 

In the case of w 1 and n < 25 the nodes of the E-minimal formula Q7d are 
contained in the interval (-1, 1). Therefore, in these cases, using Theorem 4, the 
nodes of every formula Qn E T(n, d") are also contained in (-1,1). But this is not 
so, in general, for every weight function w and every n E N. The following example 
shows that there exist even Chebyshev quadrature formulas in the strict sense, i.e., 
dn>, n, with nodes not all contained in [a, b]: 

Let w be a weight function on (-1, 1) with w(x):= (1 - x2)-4/5. A simple 
calculation with the help of Newton's identities (see [7, p. 104]) shows that for n = 3, 
4, 6, 7 the Chebyshev quadrature formulas in the strict sense exist and that their first 
and last nodes are not contained in [-1,1]. 
Institut fur Angewandte Mathematik 
Technische UniversitAt Braunschweig 
D-3300 Braunschweig, Federal Republic of Germany 

Institut fur Technische Mechanik 
Technische UniversitAt Braunschweig 
D-3300 Braunschweig, Federal Republic of Germany 

1. L. A. ANDERSON, Optimal Chebyshev-Type Quadrature Formulas for Various Weight Functions, 
Ph. D. Thesis, Purdue University, 1974. 

2. L. A. ANDERSON & W. GAUTSCHI, "Optimal weighted Chebyshev-type quadrature formulas," 
Calcolo, v. 12, 1975, pp. 211-248. 

3. H. BRASS, Quadraturverfahren, Vandenhoeck & Ruprecht, Gottingen, 1977. 
4. K.- J. FORSTER, "Bemerkungen zur optimalen Tschebyscheff-Typ Quadratur," Numer. Math., v. 38, 

1982, pp. 421-425. 
5. K.- J. FORSTER, "A comparison theorem for linear functionals and its application in quadrature," in 

Numerical Integration (G. Hammerlin, ed.), (ISNM 57), BirkhAuser Verlag, Berlin, 1982, pp. 66-76. 
6. K.- J. FORSTER & G.- P. OSTERMEYER, Zur Optimalitat und Berechnung von Tschebyscheff-Typ- 

Quadraturformeln, Bericht 1/1984, Institut fur Technische Mechanik der Technischen UniversitAt 
Braunschweig, 1983. 

7. W. GAUTSCHI, Advances in Chebyshev Quadrature, Lecture Notes in Math., vol. 506, Springer-Verlag, 
Berlin and New York, 1977, pp. 100-121. 

8. W. GAUTSCHI & G. MONEGATO, "On optimal Chebyshev-type quadratures," Numer. Math., v. 28, 
1977, pp. 59-67. 

9. W. GAUTSCHI & H. YANAGIWARA, "On Chebyshev-type quadratures," Math. Comp., v. 28, 1974, 
pp. 125-134. 

10. D. K. KAHANER, " Chebyshev-type quadrature formulas," Math. Comp., v. 25, 1970, pp. 571-574. 
11. P. RABINOWITZ & N. RICHTER, "Chebyshev-type integration rules of minimum norm," Math. 

Comp., v. 24, 1970, pp. 831-845. 
12. G. SZEGO, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., 

Providence, R.I., 1939. 


