On Weighted Chebyshev-Type Quadrature Formulas

By Klaus-Jürgen Förster and Georg-Peter Ostermeyer

Abstract

A weighted quadrature formula is of Chebyshev type if it has equal coefficients and real (but not necessarily distinct) nodes. For a given weight function we study the set $T(n, d)$ consisting of all Chebyshev-type formulas with n nodes and at least degree d. It is shown that in nonempty $T(n, d)$ there exist two special formulas having "extremal" properties. This result is used to prove uniqueness and further results for E-optimal Chebyshev-type formulas. For the weight function $w \equiv 1$, numerical investigations are carried out for $n \leqslant 25$.

1. Introduction. Let w be a nonnegative weight function on the interval (a, b), $-\infty \leqslant a<b \leqslant \infty$, admitting moments m_{j} of all order

$$
\begin{equation*}
m_{j}=\int_{a}^{b} x^{j} w(x) d x, \quad j=0,1,2, \ldots, m_{0}>0 \tag{1.1}
\end{equation*}
$$

We consider (weighted) Chebyshev-type quadrature formulas [7]. These are quadrature formulas Q_{n} with equal coefficients and real (but not necessarily distinct) nodes:

$$
\begin{align*}
Q_{n}[f]:=c & \sum_{i=1}^{n} f\left(x_{i}\right), \quad-\infty<x_{1} \leqslant x_{2} \leqslant \cdots \leqslant x_{n}<\infty, \tag{1.2}\\
& \int_{a}^{b} f(x) w(x) d x=Q_{n}[f]+R_{n}[f] .
\end{align*}
$$

By this definition, it is possible that some nodes x_{i} are not contained in the interval (a, b). Q_{n} has at least degree d (of exactness) if

$$
\begin{equation*}
R_{n}\left[p_{i}\right]=0, \quad i=0,1, \ldots, d \tag{1.3}
\end{equation*}
$$

where p_{i}, here and throughout this paper, denotes the monomial $p_{i}(x):=x^{i}$. If $d \geqslant 0$, the coefficient c in (1.2) is determined by (1.3):

$$
\begin{equation*}
c=m_{0} / n . \tag{1.4}
\end{equation*}
$$

The maximal possible degree of a Chebyshev-type quadrature formula with n nodes is denoted by d_{n}.

Let, in the following, $T(n, d)$ be the set of all Chebyshev-type quadrature formulas with n nodes and at least degree d. One has $T(n, d+1) \subseteq T(n, d)$ and $T(n, d) \subseteq T(k n, d)$ for every $k \in \mathbf{N}$. For $n>2$, a simple calculation shows that
each set $T(n, 2)$ contains an infinite number of elements. In case of $d_{n} \geqslant n$ the set $T\left(n, d_{n}\right)$ contains only one element, the so-called "Chebyshev quadrature formula in the strict sense". Weight functions w which allow such formulas for every $n \in \mathbf{N}$ are rare [7, p. 109]. In case of $d_{n}<n$ the set $T\left(n, d_{n}\right)$ possibly contains more than one element. To select some of these formulas several criteria can be found in the literature.

From a historical point of view it may be obvious to consider such quadrature formulas $Q_{n}^{\text {opt }} \in T\left(n, d_{n}\right)$, which minimize $\left|R_{n}\left[p_{d_{n}+1}\right]\right|$ among all $Q_{n} \in T\left(n, d_{n}\right)$. Such quadrature formulas are called E-optimal [9], [2], [7]. In case of weight functions w, which are symmetric with respect to the (finite) interval (a, b), several authors have distinguished between symmetric, i.e., $x_{i}-a=b-x_{n-i+1}$ for $i=$ $1, \ldots, n$, and unsymmetric formulas with regard to E-optimality [10], [9], [2]. There is computational evidence that E-optimal formulas for symmetric weight functions are indeed symmetric [7, p. 113]. Gautschi and Yanagiwara [9] have shown that symmetry would follow, if E-optimal formulas are unique in $T\left(n, d_{n}\right)$. One aim of this paper is to prove the uniqueness of E-optimal formulas in general.

Several authors have proposed other criteria to select special Chebyshev-type formulas-necessarily not contained in $T\left(n, d_{n}\right)$ (see, e.g., [7]). Therefore, it may be of interest to study the set $T(n, d)$ in general. If $T(n, d)$ contains more than one element, we show that there exists in $T(n, d)$ an infinite number of formulas which have pairwise distinct nodes. In this case, there also exists in $T(n, d)$ an infinite number of interpolatory quadrature formulas (for definition, see, e.g., [3]). Among these interpolatory quadrature formulas there are two unique formulas which have several "extremal" properties with respect to all other formulas in $T(n, d)$. By proving that the E-optimal formula $Q_{n}^{\text {opt }}$ is one of the two extremal formulas in $T\left(n, d_{n}\right)$, we can show various properties of E-optimal formulas.

The proofs of all theorems can be found in the supplements section of this issue.
2. E-Extremal Formulas. We call a (Chebyshev-type quadrature) formula $Q_{n} \in$ $T(n, d) E$-minimal in $T(n, d)$ and denote it by $Q_{n, d}^{\min }$ if

$$
\begin{equation*}
R_{n, d}^{\min }\left[p_{d+1}\right]=\min \left\{R_{n}\left[p_{d+1}\right] \mid Q_{n} \in T(n, d)\right\} \tag{2.1}
\end{equation*}
$$

Correspondingly, we define E-maximal formulas $Q_{n, d}^{\max } \in T(n, d)$ by

$$
\begin{equation*}
R_{n, d}^{\max }\left[p_{d+1}\right]=\max \left\{R_{n}\left[p_{d+1}\right] \mid Q_{n} \in T(n, d)\right\} \tag{2.2}
\end{equation*}
$$

Therefore, the following inequalities are valid for every $Q_{n} \in T(n, d)$:

$$
Q_{n, d}^{\max }\left[p_{d+1}\right] \leqslant Q_{n}\left[p_{d+1}\right] \leqslant Q_{n, d}^{\min }\left[p_{d+1}\right]
$$

Formulas with property (2.1) or (2.2) we call E-extremal. According to the arguments of Gautschi and Yanagiwara [9] for the existence of E-optimal formulas there exist E-minimal and E-maximal formulas in $T(n, d)$ for all d with

$$
\begin{equation*}
1<d \leqslant d_{n} \tag{2.3}
\end{equation*}
$$

Remark. In the following we require for d the validity of (2.3), unless noted otherwise.

Our first result is the uniqueness of E-extremal formulas in $T(n, d)$.

Theorem 1. In $T(n, d)$ there exists only one E-minimal formula $Q_{n, d}^{\min }$ and only one E-maximal formula $Q_{n, d}^{\max }$.

Definition (1.2) allows the possibility that some of the nodes coincide. It can be shown that E-extremal formulas have multiple nodes. Moreover, the two E-extremal formulas can be characterized by a special arrangement of these multiple nodes. To describe this arrangement we define for every Chebyshev-type quadrature formula Q_{n} the sequence $S\left(Q_{n}\right):=\left(s_{i}\left(Q_{n}\right)\right)_{i=1}^{n-1}$ as follows:

$$
s_{i}\left(Q_{n}\right)= \begin{cases}0, & \text { if } x_{n+1-i} \neq x_{n-i} \tag{2.4}\\ 1, & \text { if } x_{n+1-i}=x_{n-i} \text { and } i \text { odd } \\ -1, & \text { if } x_{n+1-i}=x_{n-i} \text { and } i \text { even. }\end{cases}
$$

We speak of a change of sign of the sequence $S\left(Q_{n}\right)$ (between $s_{i}\left(Q_{n}\right)$ and $\left.s_{i+l}\left(Q_{n}\right)\right)$ if

$$
\begin{align*}
& \operatorname{sign}\left(s_{i}\left(Q_{n}\right)\right)=-\operatorname{sign}\left(s_{i+l}\left(Q_{n}\right)\right) \neq 0 \tag{2.5}\\
& s_{i+1}\left(Q_{n}\right)=s_{i+2}\left(Q_{n}\right)=\cdots=s_{i+l-1}\left(Q_{n}\right)=0
\end{align*}
$$

Theorem 2. Let Q_{n} be E-extremal in $T(n, d)$. Then Q_{n} has at most d distinct nodes. Moreover,
(i) Let $d<n-1$. A formula Q_{n} is E-extremal in $T(n, d)$ if and only if $S\left(Q_{n}\right)$ has at least $(n-d-1)$ changes of sign. In this case the following holds: If the first nonzero term of $S\left(Q_{n}\right)$ is negative, then Q_{n} is E-minimal. If this term is positive, then Q_{n} is E-maximal. If $S\left(Q_{n}\right)$ has more than $(n-d-1)$ changes of sign, then Q_{n} is E-minimal as well as E-maximal and $T(n, d)$ contains only Q_{n}.
(ii) Let $d=n-1$. A formula Q_{n} is E-extremal in $T(n, d)$ if and only if $S\left(Q_{n}\right)$ has at least one nonzero term. If this term is negative, then Q_{n} is E-minimal. If this term is positive, then Q_{n} is E-maximal. If $S\left(Q_{n}\right)$ has at least one change of sign, then Q_{n} is E-minimal as well as E-maximal and $T(n, d)$ contains only Q_{n}.

Theorem 2 shows that E-extremal formulas are interpolatory quadrature formulas (for definition see, e.g., [3]). The following theorem answers the question for other interpolatory quadrature formulas in $T(n, d)$ and for formulas with pairwise distinct nodes.

Theorem 3. Let $Q_{n, d}^{\min }$ and $Q_{n, d}^{\max }$ be the E-minimal and the E-maximal formula in $T(n, d)$. Let

$$
r \in\left(R_{n, d}^{\min }\left[p_{d+1}\right], R_{n, d}^{\max }\left[p_{d+1}\right]\right)
$$

Then there exist formulas \tilde{Q}_{n} and \bar{Q}_{n} in $T(n, d)$ with $\tilde{R}_{n}\left[p_{d+1}\right]=\bar{R}_{n}\left[p_{d+1}\right]=r$ and
(i) \tilde{Q}_{n} has pairwise distinct nodes,
(ii) \bar{Q}_{n} has at most $(d+1)$ distinct nodes.

In the case of $d<n-1$, there exists for each such r even an infinite number of formulas with property (i). In the case of $d=n-1$ there exists for each such r only
one formula $Q_{n} \in T(n, d)$ with $R_{n}\left[p_{d+1}\right]=r$ and this formula has pairwise distinct nodes.

A first justification for the consideration of E-extremal formulas is the fact that their first and their nth node have extremal properties with respect to all $Q_{n} \in$ $T(n, d)$.

Theorem 4. Let x_{i} be the nodes of a formula $Q_{n} \in T(n, d)$, which is not E-extremal. Let $x_{i}^{\min }$ and $x_{i}^{\max }$ be the nodes of the E-extremal formulas $Q_{n, d}^{\min }$ and $Q_{n, d}^{\max }$ in $T(n, d)$. Then
(i) $x_{n}^{\min }>x_{n}>x_{n}^{\max }$,
(ii) $(-1)^{d} x_{1}^{\min }>(-1)^{d} x_{1}>(-1)^{d} x_{1}^{\max }$.

Therefore, it is also possible to characterize the E-minimal (E-maximal) formula in $T(n, d)$ to be that formula, whose nth node has the largest (smallest) value.

Furthermore, Theorem 4 may be helpful for the investigation of the question of whether all nodes of a formula $Q_{n} \in T(n, d)$ are contained in the interval $[a, b]$.

The formulas $Q_{n, d}^{\min }$ and $Q_{n, d}^{\max }$ are defined by the extremal property (2.1) and (2.2) of their remainder with respect to only one function, the monomial p_{d+1}. The following theorem shows that these extremal properties remain valid for a wide class of functions, which contains especially all monomials $p_{d+2 k-1}$ for all $k \in \mathbf{N}$.

Theorem 5. Let $Q_{n, d}^{\min }$ and $Q_{n, d}^{\max }$ be the E-minimal and the E-maximal formula in $T(n, d)$. Then, for all $f \in C^{d+1}, f^{(d+1)} \geqslant 0$, there hold
(i) $R_{n, d}^{\min }[f]=\min \left\{R_{n}[f] \mid Q_{n} \in T(n, d)\right\}$,
(ii) $R_{n, d}^{\max }[f]=\max \left\{R_{n}[f] \mid Q_{n} \in T(n, d)\right\}$.

Another interpretation of Theorem 5 may be of interest:
Let K_{d+1} denote the Peano kernel of degree $d+1$ ([7, p. 112], [3, p. 39]), of a formula Q_{n} in $T(n, d)$ and $K_{d+1}^{\min }$, resp. $K_{d+1}^{\max }$, the Peano kernels of the same degree of the E-extremal formulas $Q_{n}^{\min }$ or $Q_{n}^{\max }$ in $T(n, d)$. Theorem 5 implies the inequalities

$$
K_{d+1}^{\min }(x) \leqslant K_{d+1}(x) \leqslant K_{d+1}^{\max }(x)
$$

for all $x \in \mathbf{R}$.
3. E-Optimal Formulas. Our basic result for E-optimal formulas is given in the following theorem.

Theorem 6. Let $n \in \mathbf{N}$ and let $Q_{n}^{\text {opt }}$ be E-optimal. Then $Q_{n}^{\text {opt }}$ is E-extremal in $T\left(n, d_{n}\right)$.

An E-optimal formula is therefore E-minimal or E-maximal in $T\left(n, d_{n}\right)$ and has the corresponding properties given in Section 2.

The first part of Theorem 2 has been proven for E-optimal formulas by Anderson and Gautschi [2]. The second part of Theorem 2 reduces all the remaining cases to only two formulas, characterized also by the value of the nth node according to

Theorem 4. Theorem 3 shows, in particular, the impossibility that different E-extremal formulas in $T\left(n, d_{n}\right)$ are both E-optimal. This answers the question of the uniqueness of E-optimal formulas [2], [7].

Corollary 1. Let $n \in \mathbf{N}$. Then there exists one and only one E-optimal formula $Q_{n}^{\text {opt }}$.

Therefore, by the result of Gautschi and Yanagiwara [9] mentioned above, it follows from Corollary 1 that

Corollary 2. Let the weight function w be symmetric with respect to (a, b) and let $n \in \mathbf{N}$. Then d_{n} is odd and the E-optimal formula is symmetric.

Rabinowitz and Richter [11] have shown that E-optimal rules minimize $\left|R_{n}\right|$ for formulas (1.2) in special function spaces. With the help of Theorem 5, a different justification for the consideration of E-optimal formulas is given by the following theorem.

Theorem 7. Let $n \in \mathbf{N}$ and $Q_{n}^{\text {opt }}$ be the E-optimal formula and let $f \in C^{d_{n}+1}$, $f^{\left(d_{n}+1\right)} \geqslant 0$. If

$$
\operatorname{sign}\left(R_{n}^{\mathrm{opt}}\left[p_{d_{n}+1}\right]\right)=\operatorname{sign}\left(R_{n}^{\mathrm{opt}}[f]\right)
$$

then

$$
\left|R_{n}^{\mathrm{opt}}[f]\right|=\min \left\{\left|R_{n}[f]\right| \mid Q_{n} \in T\left(n, d_{n}\right)\right\}
$$

4. Numerical Results for the Weight Function $w \equiv 1$. For the weight function $w \equiv 1$ there exist Chebyshev formulas in the strict sense for $n=1,2, \ldots, 7$ and $n=9-$ see, e.g., [7]. The E-optimal formulas have been computed by Gautschi and Yanagiwara [9] for $n=8,10,11,13$ and by Anderson and Gautschi [2] for $n=12$, $14,15,16,17$. Anderson [1] has shown that these formulas, except for $n=12$, are definite, i.e., there exists a representation of their remainder term of the form

$$
\begin{equation*}
R_{n}[f]=\frac{R_{n}\left[p_{d_{n}+1}\right]}{\left(d_{n}+1\right)!} f^{\left(d_{n}+1\right)}(\xi) \tag{4.1}
\end{equation*}
$$

for every $f \in C^{d_{n}+1}$.
The present authors have computed the E-extremal formulas in $T\left(n, d_{n}\right)$ for $n \leqslant 25$ by a different method with the help of Theorem 2 resp. Theorem 3 [6]. The E-optimal formulas for $n=18, \ldots, 25$ are given at the end of this section. These formulas are all definite. Theorem 5 implies that every $Q_{n} \in T\left(n, d_{n}\right)$ is also definite for $n \leqslant 25, n \neq 12$; for $n=8,10,11,13$ see Förster [4]. In case of definiteness, the comparison of the coefficients of $f^{\left(d_{n}+1\right)}(\xi)$ in (4.1) between the E-minimal and the E-maximal formula gives information as to how useful the choice of the E-optimal formula is in $T\left(n, d_{n}\right)$. These coefficients are listed in Table 1. In every case, the E-minimal formula is E-optimal. The numerical results correspond to the interval of integration $[-1,1]$.

A conclusion of the above theorems is that the results of Gautschi and Monegato [8] and Förster [4] for $n=8,10,11,13$ remain valid for all $n \leqslant 25, n \neq 12$.

Table 1

n	$\mathrm{d}_{\mathbf{n}}$	$\mathrm{R}_{\mathrm{n}, \mathrm{~d}}^{\min }\left[\mathrm{P}_{\mathrm{d}_{\mathrm{n}}+1}\right]$	$R_{n, d}^{\max }\left[P_{d_{n}+1}\right]$	$\frac{R_{n, d}^{\max }\left[p_{d_{n}+1}\right]}{R_{n, d}^{\min }\left[p_{d_{n}+1}\right]}$	
1	1	0.667 E 0	0.667 E 0	1	definite
2	3	0.178 E 0	0.178 E 0	1	definite
3	3	$0.667 \mathrm{E}-1$	$0.667 \mathrm{E-1}$	1	definite
4	5	$0.339 \mathrm{E}-1$	$0.339 \mathrm{E}-1$	1	definite
5	5	$0.172 \mathrm{E}-1$	$0.172 \mathrm{E}-1$	1	definite
6	7	$0.102 \mathrm{E}-1$	$0.102 \mathrm{E}-1$	1	definite
7	7	$0.578 \mathrm{E-2}$	$0.578 \mathrm{E-2}$	1	definite
8	7	$0.202 \mathrm{E-2}$	$0.541 \mathrm{E-2}$	2.68	definite
9	9	$0.221 \mathrm{E-2}$	$0.221 \mathrm{E-2}$	1	definite
10	9	$0.119 \mathrm{E}-2$	$0.153 \mathrm{E-2}$	1.29	definite
11	9	$0.573 \mathrm{E-3}$	$0.155 \mathrm{E}-2$	2.71	definite
12	9	$0.663 \mathrm{E}-4$	$0.121 \mathrm{E-2}$	18.25	$\begin{aligned} & R_{12}^{\min } \text { not definite } \\ & R_{12}^{\max } \text { definite } \end{aligned}$
13	11	$0.384 \mathrm{E-3}$	$0.440 \mathrm{E}-3$	1.15	definite
14	11	$0.218 \mathrm{E-3}$	$0.464 \mathrm{E-3}$	2.13	definite
15	11	$0.102 \mathrm{E-3}$	$0.384 \mathrm{E-3}$	3.76	definite
16	11	$0.407 \mathrm{E}-4$	$0.352 \mathrm{E-3}$	8.65	definite
17	13	$0.105 \mathrm{E}-3$	$0.117 \mathrm{E-3}$	1.11	definite
18	13	0.656 E-4	$0.115 \mathrm{E}-3$	1.75	definite
19	13	$0.399 \mathrm{E}-4$	0.108 EE 3	2.71	definite
20	13	0.198 E-4	$0.101 \mathrm{E-3}$	5.10	definite
21	13	$0.613 \mathrm{E}-5$	0.860 E-4	14.03	definite
22	15	$0.242 \mathrm{E}-4$	$0.319 \mathrm{E}-4$	1.32	definite
23	15	$0.159 \mathrm{E}-4$	0.273 E-4	1.72	definite
24	15	$0.102 \mathrm{E}-4$	$0.298 \mathrm{E}-4$	2.92	definite
25	15	$0.594 \mathrm{E}-5$	$0.262 \mathrm{E}-4$	4.41	definite

Corollary 3. Let $n \leqslant 25$ and $w \equiv 1$. Let $Q_{n}^{\text {opt }}$ be the E-optimal formula and $Q_{n} \in T\left(n, d_{n}\right)$.
(a) If in (1.1) $b=-a$, then for every $m \in \mathbf{N}$,

$$
0 \leqslant R_{n}^{\mathrm{opt}}\left[p_{m}\right] \leqslant R_{n}\left[p_{m}\right] .
$$

(b) If $n \neq 12$ and $f \in C^{d_{n}+1}, f^{\left(d_{n}+1\right)} \geqslant 0$, then

$$
0 \leqslant R_{n}^{\mathrm{opt}}[f] \leqslant R_{n}[f] .
$$

Therefore, these E-optimal formulas satisfy also every optimality criterion of the form

$$
\min \left\{\sum_{i=d_{n}+1}^{\infty} a_{i}\left(R_{n}\left[p_{i}\right]\right)^{2} \mid Q_{n} \in T\left(n, d_{n}\right)\right\}
$$

with any $a_{i} \geqslant 0$ [7, p. 113]. They are, in particular for $n \neq 12$, also optimal in the sense of Sard [7, p. 112], [4].

$$
\text { The E-Optimal Formulas for } w \equiv 1 \quad 18 \leqslant n \leqslant 25
$$

$n=18$

$$
\begin{array}{llr}
-x_{1}= & 0.956 .11589370931681977 \\
-x_{2}=-x_{3}= & 0.78339593833119703042 \\
-x_{4}= & 0.58679047283945639018 \\
-x_{5}=-x_{6}= & 0.45756408008040941541 \\
-x_{7}=-x_{9}= & 0.25737493728377540704 \\
-x_{8}=-x_{16} & =x_{18} \\
=x_{17} \\
x_{9} & 0.12068411927871514185 & =x_{13}=x_{15} \\
=x_{12}
\end{array}
$$

$n=19$

$$
\begin{aligned}
& -x_{1}= \\
& -x_{2}=-x_{3}= \\
& -x_{4}= \\
& -x_{5}=-x_{6}= \\
& -x_{7}=-x_{9}= \\
& -x_{8}=-x_{10}= \\
& -x_{10}=
\end{aligned}
$$

$$
\begin{aligned}
& 0.95841522638659246454 \\
& 0.79485226355878236323 \\
& 0.60772484959475892451 \\
& 0.48688511013054279206 \\
& 0.29638895564058655907 \\
& 0.16315108328419371742 \\
& 0.0
\end{aligned}
$$

$$
\begin{aligned}
& =x_{19} \\
=x_{17} & =x_{18} \\
& =x_{16} \\
=x_{14} & =x_{15} \\
& =x_{13} \\
=x_{11} & =x_{12}
\end{aligned}
$$

$n=20$

$$
\begin{aligned}
& -x_{1}= \\
& -x_{2}=-x_{3}= \\
& -x_{4}=-x_{6}= \\
& -x_{5}=-x_{9}=-x_{10} \\
& -x_{7}=-x_{9} \\
& -x_{8}=-x_{0}=
\end{aligned}
$$

$$
\begin{aligned}
& 0.96051482286129288228 \\
& 0.80496515092537905967 \\
& 0.63049631592920524269 \\
& 0.50749481899047359478 \\
& 0.35906562874648327105 \\
& 0.15625951409613565727
\end{aligned}
$$

$$
\begin{aligned}
& =x_{20} \\
=x_{18} & =x_{19} \\
& =x_{17} \\
=x_{15} & =x_{16} \\
& =x_{14} \\
=x_{11} & =x_{12}
\end{aligned}=x_{13}
$$

$n=21$

$$
\begin{aligned}
& -x_{1}= \\
& -x_{2}=-x_{3}= \\
& -x_{4}= \\
& -x_{5}=-x_{6}= \\
& -x_{7}= \\
& -x_{8}=-x_{9}=-x_{10}= \\
& -x_{11}=
\end{aligned}
$$

$$
\begin{aligned}
& 0.96243015157286074846 \\
& 0.81403490074542027161 \\
& 0.65167313907372323093 \\
& 0.52555764207596964732 \\
& 0.40559995128245393129 \\
& 0.18868995126113857540 \\
& 0.0
\end{aligned}
$$

$$
\begin{aligned}
& =x_{21} \\
=x_{19} & =x_{20} \\
& =x_{18} \\
=x_{16} & =x_{17} \\
& =x_{15} \\
=x_{12}=x_{13} & =x_{14}
\end{aligned}
$$

(continues)
(continued)
$n=22$
$-x_{1}=$
$-x_{2}=-x_{3}=$
$-x_{4}=-x_{6}=$
$-x_{5}=-x_{6}=$
$-x_{7}=-x_{9}=$
$-x_{8}=$
$-x_{11}=$
0.96415710299556983171
0.82238727412825985167
0.66864696018494187221
0.54600146439908270396
0.43289922578951637757
0.24362435512429351622
0.18706881618423297318
0.0

$n=23$
$-x_{1}=$
$-x_{2}=-x_{3}=$
$-x_{4}=-x_{6}=$
$-x_{5}=-$
$-x_{7}=-x_{9}=$
$-x_{8}=$
$-x_{11}=-x_{12}=$
0.96570343338357257096
0.83018849753913168834
0.68178827221824105045
0.56773078130524428871
0.45254730818175202350
0.26810913164371012869
0.25355181302970919482
0.0

$n=24$
$n=25$
$-x_{1}=$
$-x_{2}=-x_{3}=$
$-x_{4}=-x_{6}=$
$-x_{5}=-x_{6}=$
$-x_{7}=-x_{9}=-x_{10}=$
$-x_{8}=-x_{11}=$
$-x_{12}=-x_{13}=$
0.96844773854353010676
0.84375871505247479493
0.70773522849837207585
0.60110284438058970914
0.50135993977793685911
0.31836145542090472915
0.16110820932771201152
0.0

5. Examples. Table 1 shows that in case of $w \equiv 1$ the sets $T\left(n, d_{n}\right)$ for $n \leqslant 25$ and $d_{n}<n$ contain an infinite number of elements (see Theorem 3). The same is true for the examples computed by Anderson and Gautschi [2] in case of other weight functions. The following example shows with the help of Theorem 2 the possibility that for $d_{n}<n$ the set $T\left(n, d_{n}\right)$ contains only one element.

Let the weight function w be given by $w(x):=\sqrt{1-x^{2}}$. The corresponding Gauss-formula G_{5} with 5 nodes and therefore degree 9 is given by (see Szegö [12, p. 344])

$$
G_{5}[f]=\frac{\pi}{24}\left\{f\left(-\frac{\sqrt{3}}{2}\right)+3 f\left(-\frac{1}{2}\right)+4 f(0)+3 f\left(\frac{1}{2}\right)+f\left(\frac{\sqrt{3}}{2}\right)\right\} .
$$

Because of $m_{0}=\pi / 2$ the formula G_{5} is a Chebyshev-type quadrature formula (1.2)
with the twelve nodes

$$
\begin{gathered}
x_{1}=-\frac{\sqrt{3}}{2}=-x_{12} \\
x_{2}=x_{3}=x_{4}=-\frac{1}{2}=-x_{11}=-x_{10}=-x_{9} \\
x_{5}=x_{6}=0=-x_{8}=-x_{7} .
\end{gathered}
$$

So G_{5} is an element of $T(12,9)$. By (2.4) the sequence $S\left(G_{5}\right)$ is given by

$$
S\left(G_{5}\right)=(0,1,-1,0,-1,1,-1,0,-1,1,0)
$$

and has four changes of sign; see (2.5). Theorem $2(i)$ shows that $T(12,9)$ contains only the element G_{5}. Furthermore, G_{5} is also the only element of $T(12,8)$, and G_{5} is the E-maximal formula $Q_{12,7}^{\max }$ in $T(12,7)$.

In the case of $w \equiv 1$ and $n \leqslant 25$ the nodes of the E-minimal formula $Q_{n, d_{n}}^{\min }$ are contained in the interval $(-1,1)$. Therefore, in these cases, using Theorem 4, the nodes of every formula $Q_{n} \in T\left(n, d_{n}\right)$ are also contained in $(-1,1)$. But this is not so, in general, for every weight function w and every $n \in \mathbf{N}$. The following example shows that there exist even Chebyshev quadrature formulas in the strict sense, i.e., $d_{n} \geqslant n$, with nodes not all contained in $[a, b]$:

Let w be a weight function on $(-1,1)$ with $w(x):=\left(1-x^{2}\right)^{-4 / 5}$. A simple calculation with the help of Newton's identities (see [7, p. 104]) shows that for $n=3$, 4, 6, 7 the Chebyshev quadrature formulas in the strict sense exist and that their first and last nodes are not contained in $[-1,1]$.
Institut für Angewandte Mathematik
Technische Universität Braunschweig
D-3300 Braunschweig, Federal Republic of Germany
Institut für Technische Mechanik
Technische Universität Braunschweig
D-3300 Braunschweig, Federal Republic of Germany

1. L. A. Anderson, Optimal Chebyshev-Type Quadrature Formulas for Various Weight Functions, Ph. D. Thesis, Purdue University, 1974.
2. L. A. Anderson \& W. Gautschi, "Optimal weighted Chebyshev-type quadrature formulas," Calcolo, v. 12, 1975, pp. 211-248.
3. H. Brass, Quadraturverfahren, Vandenhoeck \& Ruprecht, Göttingen, 1977.
4. K.- J. FÓrSTER, "Bemerkungen zur optimalen Tschebyscheff-Typ Quadratur," Numer. Math., v. 38, 1982, pp. 421-425.
5. K.- J. FORSTER, "A comparison theorem for linear functionals and its application in quadrature," in Numerical Integration (G. Hämmerlin, ed.), (ISNM 57), Birkhäuser Verlag, Berlin, 1982, pp. 66-76.
6. K.- J. Forster \& G.- P. Ostermeyer, Zur Optimalität und Berechnung von Tschebyscheff-TypQuadraturformeln, Bericht 1/1984, Institut für Technische Mechanik der Technischen Universität Braunschweig, 1983.
7. W. Gautschi, Advances in Chebyshev Quadrature, Lecture Notes in Math., vol. 506, Springer-Verlag, Berlin and New York, 1977, pp. 100-121.
8. W. Gautschi \& G. Monegato, "On optimal Chebyshev-type quadratures," Numer. Math., v. 28, 1977, pp. 59-67.
9. W. Gautschi \& H. Yanagiwara, "On Chebyshev-type quadratures," Math. Comp., v. 28, 1974, pp. 125-134.
10. D. K. Kahaner, "Chebyshev-type quadrature formulas," Math. Comp., v. 25, 1970, pp. 571-574.
11. P. Rabinowitz \& N. Richter, "Chebyshev-type integration rules of minimum norm," Math. Comp., v. 24, 1970, pp. 831-845.
12. G. Szego, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, R.I., 1939.
