On Weighted Chebyshev-Type Quadrature Formulas

By Klaus-Jürgen Förster and Georg-Peter Ostermeyer

Abstract. A weighted quadrature formula is of Chebyshev type if it has equal coefficients and real (but not necessarily distinct) nodes. For a given weight function we study the set T(n, d) consisting of all Chebyshev-type formulas with n nodes and at least degree d. It is shown that in nonempty T(n, d) there exist two special formulas having "extremal" properties. This result is used to prove uniqueness and further results for *E*-optimal Chebyshev-type formulas. For the weight function $w \equiv 1$, numerical investigations are carried out for $n \leq 25$.

1. Introduction. Let w be a nonnegative weight function on the interval (a, b), $-\infty \le a < b \le \infty$, admitting moments m_i of all order

(1.1)
$$m_j = \int_a^b x^j w(x) dx, \quad j = 0, 1, 2, ..., m_0 > 0.$$

We consider (weighted) Chebyshev-type quadrature formulas [7]. These are quadrature formulas Q_n with equal coefficients and real (but not necessarily distinct) nodes:

(1.2)
$$Q_{n}[f] \coloneqq c \sum_{i=1}^{n} f(x_{i}), \quad -\infty < x_{1} \le x_{2} \le \cdots \le x_{n} < \infty, \\ \int_{a}^{b} f(x) w(x) \, dx = Q_{n}[f] + R_{n}[f].$$

By this definition, it is possible that some nodes x_i are not contained in the interval (a, b). Q_n has at least degree d (of exactness) if

(1.3)
$$R_n[p_i] = 0, \quad i = 0, 1, \dots, d,$$

where p_i , here and throughout this paper, denotes the monomial $p_i(x) := x^i$. If $d \ge 0$, the coefficient c in (1.2) is determined by (1.3):

$$(1.4) c = m_0/n.$$

The maximal possible degree of a Chebyshev-type quadrature formula with n nodes is denoted by d_n .

Let, in the following, T(n, d) be the set of all Chebyshev-type quadrature formulas with *n* nodes and at least degree *d*. One has $T(n, d + 1) \subseteq T(n, d)$ and $T(n, d) \subseteq T(kn, d)$ for every $k \in \mathbb{N}$. For n > 2, a simple calculation shows that

Received March 26, 1984; revised November 30, 1984 and April 29. 1985.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 65D30.

each set T(n, 2) contains an infinite number of elements. In case of $d_n \ge n$ the set $T(n, d_n)$ contains only one element, the so-called "Chebyshev quadrature formula in the strict sense". Weight functions w which allow such formulas for every $n \in \mathbb{N}$ are rare [7, p. 109]. In case of $d_n < n$ the set $T(n, d_n)$ possibly contains more than one element. To select some of these formulas several criteria can be found in the literature.

From a historical point of view it may be obvious to consider such quadrature formulas $Q_n^{\text{opt}} \in T(n, d_n)$, which minimize $|R_n[p_{d_n+1}]|$ among all $Q_n \in T(n, d_n)$. Such quadrature formulas are called *E*-optimal [9], [2], [7]. In case of weight functions *w*, which are symmetric with respect to the (finite) interval (a, b), several authors have distinguished between symmetric, i.e., $x_i - a = b - x_{n-i+1}$ for i = $1, \ldots, n$, and unsymmetric formulas with regard to *E*-optimality [10], [9], [2]. There is computational evidence that *E*-optimal formulas for symmetric weight functions are indeed symmetric [7, p. 113]. Gautschi and Yanagiwara [9] have shown that symmetry would follow, if *E*-optimal formulas are unique in $T(n, d_n)$. One aim of this paper is to prove the uniqueness of *E*-optimal formulas in general.

Several authors have proposed other criteria to select special Chebyshev-type formulas—necessarily not contained in $T(n, d_n)$ (see, e.g., [7]). Therefore, it may be of interest to study the set T(n, d) in general. If T(n, d) contains more than one element, we show that there exists in T(n, d) an infinite number of formulas which have pairwise distinct nodes. In this case, there also exists in T(n, d) an infinite number of interpolatory quadrature formulas (for definition, see, e.g., [3]). Among these interpolatory quadrature formulas there are two unique formulas which have several "extremal" properties with respect to all other formulas in T(n, d). By proving that the *E*-optimal formula Q_n^{opt} is one of the two extremal formulas in $T(n, d_n)$, we can show various properties of *E*-optimal formulas.

The proofs of all theorems can be found in the supplements section of this issue.

2. *E*-Extremal Formulas. We call a (Chebyshev-type quadrature) formula $Q_n \in T(n, d)$ *E*-minimal in T(n, d) and denote it by $Q_{n,d}^{\min}$ if

(2.1)
$$R_{n,d}^{\min}[p_{d+1}] = \min\{R_n[p_{d+1}] | Q_n \in T(n,d)\}.$$

Correspondingly, we define *E*-maximal formulas $Q_{n,d}^{\max} \in T(n, d)$ by

(2.2)
$$R_{n,d}^{\max}[p_{d+1}] = \max\{R_n[p_{d+1}] | Q_n \in T(n,d)\}.$$

Therefore, the following inequalities are valid for every $Q_n \in T(n, d)$:

$$Q_{n,d}^{\max}[p_{d+1}] \leq Q_n[p_{d+1}] \leq Q_{n,d}^{\min}[p_{d+1}].$$

Formulas with property (2.1) or (2.2) we call *E*-extremal. According to the arguments of Gautschi and Yanagiwara [9] for the existence of *E*-optimal formulas there exist *E*-minimal and *E*-maximal formulas in T(n, d) for all d with

$$(2.3) 1 < d \le d_n.$$

Remark. In the following we require for d the validity of (2.3), unless noted otherwise.

Our first result is the uniqueness of E-extremal formulas in T(n, d).

THEOREM 1. In T(n, d) there exists only one E-minimal formula $Q_{n,d}^{\min}$ and only one E-maximal formula $Q_{n,d}^{\max}$.

Definition (1.2) allows the possibility that some of the nodes coincide. It can be shown that *E*-extremal formulas have multiple nodes. Moreover, the two *E*-extremal formulas can be characterized by a special arrangement of these multiple nodes. To describe this arrangement we define for every Chebyshev-type quadrature formula Q_n the sequence $S(Q_n) := (s_i(Q_n))_{i=1}^{n-1}$ as follows:

(2.4)
$$s_i(Q_n) = \begin{cases} 0, & \text{if } x_{n+1-i} \neq x_{n-i}, \\ 1, & \text{if } x_{n+1-i} = x_{n-i} \text{ and } i \text{ odd,} \\ -1, & \text{if } x_{n+1-i} = x_{n-i} \text{ and } i \text{ even.} \end{cases}$$

We speak of a change of sign of the sequence $S(Q_n)$ (between $s_i(Q_n)$ and $s_{i+1}(Q_n)$) if

(2.5)
$$sign(s_i(Q_n)) = -sign(s_{i+l}(Q_n)) \neq 0, \\ s_{i+1}(Q_n) = s_{i+2}(Q_n) = \cdots = s_{i+l-1}(Q_n) = 0.$$

THEOREM 2. Let Q_n be E-extremal in T(n, d). Then Q_n has at most d distinct nodes. Moreover,

(i) Let d < n - 1. A formula Q_n is E-extremal in T(n, d) if and only if $S(Q_n)$ has at least (n - d - 1) changes of sign. In this case the following holds: If the first nonzero term of $S(Q_n)$ is negative, then Q_n is E-minimal. If this term is positive, then Q_n is E-maximal. If $S(Q_n)$ has more than (n - d - 1) changes of sign, then Q_n is E-minimal as well as E-maximal and T(n, d) contains only Q_n .

(ii) Let d = n - 1. A formula Q_n is E-extremal in T(n, d) if and only if $S(Q_n)$ has at least one nonzero term. If this term is negative, then Q_n is E-minimal. If this term is positive, then Q_n is E-maximal. If $S(Q_n)$ has at least one change of sign, then Q_n is E-minimal as well as E-maximal and T(n, d) contains only Q_n .

Theorem 2 shows that *E*-extremal formulas are interpolatory quadrature formulas (for definition see, e.g., [3]). The following theorem answers the question for other interpolatory quadrature formulas in T(n, d) and for formulas with pairwise distinct nodes.

THEOREM 3. Let $Q_{n,d}^{\min}$ and $Q_{n,d}^{\max}$ be the E-minimal and the E-maximal formula in T(n, d). Let

$$r \in \left(R_{n,d}^{\min}[p_{d+1}], R_{n,d}^{\max}[p_{d+1}] \right).$$

Then there exist formulas \tilde{Q}_n and \overline{Q}_n in T(n, d) with $\tilde{R}_n[p_{d+1}] = \overline{R}_n[p_{d+1}] = r$ and

(i) \tilde{Q}_n has pairwise distinct nodes,

(ii) \overline{Q}_n has at most (d + 1) distinct nodes.

In the case of d < n - 1, there exists for each such r even an infinite number of formulas with property (i). In the case of d = n - 1 there exists for each such r only

one formula $Q_n \in T(n, d)$ with $R_n[p_{d+1}] = r$ and this formula has pairwise distinct nodes.

A first justification for the consideration of E-extremal formulas is the fact that their first and their *n*th node have extremal properties with respect to all $Q_n \in$ T(n, d).

THEOREM 4. Let x_i be the nodes of a formula $Q_n \in T(n, d)$, which is not E-extremal. Let x_i^{\min} and x_i^{\max} be the nodes of the E-extremal formulas $Q_{n,d}^{\min}$ and $Q_{n,d}^{\max}$ in T(n, d). Then

(i) $x_n^{\min} > x_n > x_n^{\max}$, (ii) $(-1)^d x_1^{\min} > (-1)^d x_1 > (-1)^d x_1^{\max}$.

Therefore, it is also possible to characterize the *E*-minimal (*E*-maximal) formula in T(n, d) to be that formula, whose *n*th node has the largest (smallest) value.

Furthermore, Theorem 4 may be helpful for the investigation of the question of whether all nodes of a formula $Q_n \in T(n, d)$ are contained in the interval [a, b].

The formulas $Q_{n,d}^{\min}$ and $Q_{n,d}^{\max}$ are defined by the extremal property (2.1) and (2.2) of their remainder with respect to only one function, the monomial p_{d+1} . The following theorem shows that these extremal properties remain valid for a wide class of functions, which contains especially all monomials p_{d+2k-1} for all $k \in \mathbb{N}$.

THEOREM 5. Let $Q_{n,d}^{\min}$ and $Q_{n,d}^{\max}$ be the E-minimal and the E-maximal formula in T(n, d). Then, for all $f \in C^{d+1}$, $f^{(d+1)} \ge 0$, there hold

(i) $R_{n,d}^{\min}[f] = \min\{R_n[f]|Q_n \in T(n,d)\},$ (ii) $R_{n,d}^{\max}[f] = \max\{R_n[f]|Q_n \in T(n,d)\}.$

Another interpretation of Theorem 5 may be of interest:

Let K_{d+1} denote the Peano kernel of degree d + 1 ([7, p. 112], [3, p. 39]), of a formula Q_n in T(n, d) and K_{d+1}^{\min} , resp. K_{d+1}^{\max} , the Peano kernels of the same degree of the *E*-extremal formulas Q_n^{\min} or Q_n^{\max} in T(n, d). Theorem 5 implies the inequalities

$$K_{d+1}^{\min}(x) \leqslant K_{d+1}(x) \leqslant K_{d+1}^{\max}(x)$$

for all $x \in \mathbf{R}$.

3. E-Optimal Formulas. Our basic result for E-optimal formulas is given in the following theorem.

THEOREM 6. Let $n \in \mathbb{N}$ and let Q_n^{opt} be E-optimal. Then Q_n^{opt} is E-extremal in $T(n, d_n)$.

An E-optimal formula is therefore E-minimal or E-maximal in $T(n, d_n)$ and has the corresponding properties given in Section 2.

The first part of Theorem 2 has been proven for *E*-optimal formulas by Anderson and Gautschi [2]. The second part of Theorem 2 reduces all the remaining cases to only two formulas, characterized also by the value of the nth node according to Theorem 4. Theorem 3 shows, in particular, the impossibility that different *E*-extremal formulas in $T(n, d_n)$ are both *E*-optimal. This answers the question of the uniqueness of *E*-optimal formulas [2], [7].

COROLLARY 1. Let $n \in \mathbb{N}$. Then there exists one and only one E-optimal formula Q_n^{opt} .

Therefore, by the result of Gautschi and Yanagiwara [9] mentioned above, it follows from Corollary 1 that

COROLLARY 2. Let the weight function w be symmetric with respect to (a, b) and let $n \in \mathbb{N}$. Then d_n is odd and the E-optimal formula is symmetric.

Rabinowitz and Richter [11] have shown that *E*-optimal rules minimize $|R_n|$ for formulas (1.2) in special function spaces. With the help of Theorem 5, a different justification for the consideration of *E*-optimal formulas is given by the following theorem.

THEOREM 7. Let $n \in \mathbb{N}$ and Q_n^{opt} be the E-optimal formula and let $f \in C^{d_n+1}$, $f^{(d_n+1)} \ge 0$. If

$$\operatorname{sign}\left(R_{n}^{\operatorname{opt}}\left[p_{d_{n}+1}\right]\right) = \operatorname{sign}\left(R_{n}^{\operatorname{opt}}\left[f\right]\right),$$

then

$$\left|R_n^{\text{opt}}[f]\right| = \min\left\{\left|R_n[f]\right| \mid Q_n \in T(n, d_n)\right\}$$

4. Numerical Results for the Weight Function $w \equiv 1$. For the weight function $w \equiv 1$ there exist Chebyshev formulas in the strict sense for n = 1, 2, ..., 7 and n = 9—see, e.g., [7]. The *E*-optimal formulas have been computed by Gautschi and Yanagiwara [9] for n = 8, 10, 11, 13 and by Anderson and Gautschi [2] for n = 12, 14, 15, 16, 17. Anderson [1] has shown that these formulas, except for n = 12, are definite, i.e., there exists a representation of their remainder term of the form

(4.1)
$$R_n[f] = \frac{R_n[p_{d_n+1}]}{(d_n+1)!} f^{(d_n+1)}(\xi)$$

for every $f \in C^{d_n+1}$.

The present authors have computed the *E*-extremal formulas in $T(n, d_n)$ for $n \leq 25$ by a different method with the help of Theorem 2 resp. Theorem 3 [6]. The *E*-optimal formulas for n = 18, ..., 25 are given at the end of this section. These formulas are all definite. Theorem 5 implies that every $Q_n \in T(n, d_n)$ is also definite for $n \leq 25$, $n \neq 12$; for n = 8, 10, 11, 13 see Förster [4]. In case of definiteness, the comparison of the coefficients of $f^{(d_n+1)}(\xi)$ in (4.1) between the *E*-minimal and the *E*-maximal formula gives information as to how useful the choice of the *E*-optimal formula is in $T(n, d_n)$. These coefficients are listed in Table 1. In every case, the *E*-minimal formula is *E*-optimal. The numerical results correspond to the interval of integration [-1, 1].

A conclusion of the above theorems is that the results of Gautschi and Monegato [8] and Förster [4] for n = 8, 10, 11, 13 remain valid for all $n \le 25, n \ne 12$.

				R ^{max} n,d [P _{dn+1}]	
n 	ďn	R ^{min} n,d[Pdn+1]	R ^{max} n,d[Pdn+1]	R ^{min} [Pdn+1]	
1	1	0.667 E 0	0.667 E O	1	definite
2	3	0.178 E O	0.178 E O	1	definite
3	3	0.667 E-1	0.667 E-1	1	definite
4	5	0.339 E-1	0.339 E-1	1	definite
5	5	0.172 E-1	0.172 E-1	1	definite
6	7	0.102 E-1	0.102 E-1	1	definite
7	7	0.578 E-2	0.578 E-2	1	definite
8	7	0.2o2 E-2	0.541 E-2	2.68	definite
9	9	0.221 E-2	0.221 E-2	1	definite
10	9	0.119 E-2	0.153 E-2	1.29	definite
11	9	0.573 E-3	0.155 E-2	2.71	definite
12	9	0.663 E-4	0.121 E-2	18.25	R ^{min} ^{not} definite R ^{max} definite
13	11	0.384 E-3	0.440 E-3	1.15	definite
14	11	0.218 E-3	0.464 E-3	2.13	definite
15	11	0.102 E-3	0.384 E-3	3.76	definite
16	11	0.407 E-4	0.352 E-3	8.65	definite
17	13	0.105 E-3	0.117 E-3	1.11	definite
18	13	0.656 E-4	0.115 E-3	1.75	definite
19	13	0.399 E-4	0.108 E-3	2.71	definite
20	13	0.198 E-4	0.101 E-3	5.10	definite
21	13	0.613 2-5	0.860 E-4	14.03	definite
2 2	15	0.242 E-4	0.319 E-4	1.32	definite
23	15	0.159 E-4	0.273 E-4	1.72	definite
24	15	0.102 E-4	0.298 E-4	2.92	definite
25	15	0.594 E-5	0.262 E-4	4.41	definite

TABLE 1

COROLLARY 3. Let $n \leq 25$ and $w \equiv 1$. Let Q_n^{opt} be the E-optimal formula and $Q_n \in T(n, d_n)$.

(a) If in (1.1) b = -a, then for every $m \in \mathbb{N}$,

$$0 \leq R_n^{\text{opt}}[p_m] \leq R_n[p_m].$$

(b) If $n \neq 12$ and $f \in C^{d_n+1}$, $f^{(d_n+1)} \ge 0$, then

$$0 \leqslant R_n^{\text{opt}}[f] \leqslant R_n[f].$$

Therefore, these E-optimal formulas satisfy also every optimality criterion of the form

$$\min\left\{\sum_{i=d_n+1}^{\infty}a_i(R_n[p_i])^2\middle|Q_n\in T(n,d_n)\right\}$$

with any $a_i \ge 0$ [7, p. 113]. They are, in particular for $n \ne 12$, also optimal in the sense of Sard [7, p. 112], [4].

The E-Optimal Formulas for $w \equiv 1$ $18 \le n \le 25$

<u>n = 18</u>		
$ \begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.95611589370931681977 0.78339593833119703042 0.58679047283945639018 0.45756408008040941541 0.25737493728377540704 0.12068411927871514185	$= x_{18} = x_{16} = x_{17} = x_{15} = x_{13} = x_{14} = x_{12} = x_{10} = x_{11}$
<u>n = 19</u>		
$ \begin{array}{r} -x_{1} = & \\ -x_{2} = & -x_{3} = \\ -x_{4} = & \\ -x_{5} = & -x_{6} = \\ -x_{7} = & \\ -x_{8} = & -x_{9} = \\ -x_{10} = & \\ \end{array} $	0.95841522638659246454 0.79485226355878236323 0.60772484959475892451 0.48688511013054279206 0.29638895564058655907 0.16315108328419371742 0.0	$= x_{19} = x_{17} = x_{18} = x_{16} = x_{14} = x_{15} = x_{13} = x_{11} = x_{12}^{13}$
<u>n = 20</u>		
$-x_1 = -x_2 = -x_3 = -x_4 = -x_5 = -x_6 = -x_7 = -x_8 = -x_9 = -x_{10}$	0.96051482286129288228 0.80496515092537905967 0.63049631592920524269 0.50749481899047359478 0.35906562874648327105 0.15625951409613565727	
<u>n = 21</u>		
$ \begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.96243015157286074846 0.81403490074542027161 0.65167313907372323093 0.52555764207596964732 0.40559995128245393129 0.18868995126113857640 0.0	$= x_{19} = x_{20} = x_{18} = x_{16} = x_{17} = x_{15} = x_{12} = x_{13} = x_{14}$

(continued)

$\frac{n = 22}{-x_1} = -x_3 = -x_4 = -x_6 = -x_7 = -x_6 = -x_7 = -x_8 = -x_9 = -x_8 = -x_9 = -x_{11} = -x_{11$	0.96415710299556983171 0.82238727412825985167 0.66864696018494187221 0.54600146439908270396 0.43289922578951637757 0.24362435512429351622 0.18706881618423297318 0.0	$= x_{22} = x_{20} = x_{21} = x_{19} = x_{17} = x_{18} = x_{16} = x_{14} = x_{15} = x_{13} = x_{12}$
$n = 23$ $-x_{1} = -x_{2} = -x_{3} = -x_{4} = -x_{5} = -x_{6} = -x_{7} = -x_{7} = -x_{7} = -x_{7} = -x_{10} = -x_{12} = -x_{1$	0.96570343338357257096 0.83018849753913168834 0.68178827221824105045 0.56773078130524428871 0.45254730818175202350 0.26810913164371012869 0.25355181302970919482 0.0	$= x_{21} = x_{22} = x_{22} = x_{22} = x_{20} = x_{18} = x_{19} = x_{17} = x_{15} = x_{16} = x_{14} = x_{13}$
$\frac{n = 24}{-x_{1} = -x_{2} = -x_{3} = -x_{4} = -x_{5} = -x_{6} = -x_{7} = -x_{7} = -x_{9} = -x_{10} = -x_{11} = -x_{12} = -x_{12} = -x_{10} = -x_$	0.96712730714333769553 0.83729311756137103729 0.69467063974654513014 0.58616217620434405885 0.47487624160088429065 0.29353907385470281834 0.09382293173785193807 0.0	$= x_{24}$ $= x_{22} = x_{23}$ $= x_{19} = x_{20}$ $= x_{15} = x_{16} = x_{17}$ $= x_{14}$ $= x_{13}$
$\frac{n = 25}{x_1} = -x_3 = -x_3 = -x_4 = -x_6 = -x_7 = -x_6 = -x_7 = -x_8 = -x_9 = -x_{10} = -x_{11} = -x_{12} = -x_{13} = -x_{$	0.96844773854353010676 0.84375871505247479493 0.70773522849837207585 0.60110284438058970914 0.50135993977793685911 0.31836145542090472915 0.16110820932771201152 0.0	$= x_{23} = x_{24} = x_{22} = x_{24} = x_{22} = x_{21} = x_{19} = x_{16} = x_{17} = x_{18} = x_{15} = x_{14}$

5. Examples. Table 1 shows that in case of $w \equiv 1$ the sets $T(n, d_n)$ for $n \leq 25$ and $d_n < n$ contain an infinite number of elements (see Theorem 3). The same is true for the examples computed by Anderson and Gautschi [2] in case of other weight functions. The following example shows with the help of Theorem 2 the possibility that for $d_n < n$ the set $T(n, d_n)$ contains only one element.

Let the weight function w be given by $w(x) := \sqrt{1 - x^2}$. The corresponding Gauss-formula G_5 with 5 nodes and therefore degree 9 is given by (see Szegö [12, p. 344])

$$G_{5}[f] = \frac{\pi}{24} \left\{ f\left(-\frac{\sqrt{3}}{2}\right) + 3f\left(-\frac{1}{2}\right) + 4f(0) + 3f\left(\frac{1}{2}\right) + f\left(\frac{\sqrt{3}}{2}\right) \right\}.$$

Because of $m_0 = \pi/2$ the formula G_5 is a Chebyshev-type quadrature formula (1.2)

with the twelve nodes

$$x_1 = -\frac{\sqrt{3}}{2} = -x_{12},$$

$$x_2 = x_3 = x_4 = -\frac{1}{2} = -x_{11} = -x_{10} = -x_9,$$

$$x_5 = x_6 = 0 = -x_8 = -x_7.$$

So G_5 is an element of T(12, 9). By (2.4) the sequence $S(G_5)$ is given by

 $S(G_5) = (0, 1, -1, 0, -1, 1, -1, 0, -1, 1, 0)$

and has four changes of sign; see (2.5). Theorem 2(i) shows that T(12, 9) contains only the element G_5 . Furthermore, G_5 is also the only element of T(12, 8), and G_5 is the *E*-maximal formula $Q_{12,7}^{\max}$ in T(12, 7).

In the case of $w \equiv 1$ and $n \leq 25$ the nodes of the *E*-minimal formula Q_{n,d_n}^{\min} are contained in the interval (-1, 1). Therefore, in these cases, using Theorem 4, the nodes of every formula $Q_n \in T(n, d_n)$ are also contained in (-1, 1). But this is not so, in general, for every weight function w and every $n \in \mathbb{N}$. The following example shows that there exist even Chebyshev quadrature formulas in the strict sense, i.e., $d_n \geq n$, with nodes not all contained in [a, b]:

Let w be a weight function on (-1, 1) with $w(x) := (1 - x^2)^{-4/5}$. A simple calculation with the help of Newton's identities (see [7, p. 104]) shows that for n = 3, 4, 6, 7 the Chebyshev quadrature formulas in the strict sense exist and that their first and last nodes are not contained in [-1, 1].

Institut für Angewandte Mathematik Technische Universität Braunschweig D-3300 Braunschweig, Federal Republic of Germany

Institut für Technische Mechanik

Technische Universität Braunschweig

D-3300 Braunschweig, Federal Republic of Germany

1. L. A. ANDERSON, Optimal Chebyshev-Type Quadrature Formulas for Various Weight Functions, Ph. D. Thesis, Purdue University, 1974.

2. L. A. ANDERSON & W. GAUTSCHI, "Optimal weighted Chebyshev-type quadrature formulas," Calcolo, v. 12, 1975, pp. 211-248.

3. H. BRASS, Quadraturverfahren, Vandenhoeck & Ruprecht, Göttingen, 1977.

4. K.- J. FÖRSTER, "Bemerkungen zur optimalen Tschebyscheff-Typ Quadratur," Numer. Math., v. 38, 1982, pp. 421-425.

5. K.- J. FÖRSTER, "A comparison theorem for linear functionals and its application in quadrature," in *Numerical Integration* (G. Hämmerlin, ed.), (ISNM 57), Birkhäuser Verlag, Berlin, 1982, pp. 66-76.

6. K.-J. FÖRSTER & G.-P. OSTERMEYER, Zur Optimalität und Berechnung von Tschebyscheff-Typ-Quadraturformeln, Bericht 1/1984, Institut für Technische Mechanik der Technischen Universität Braunschweig, 1983.

7. W. GAUTSCHI, Advances in Chebyshev Quadrature, Lecture Notes in Math., vol. 506, Springer-Verlag, Berlin and New York, 1977, pp. 100-121.

8. W. GAUTSCHI & G. MONEGATO, "On optimal Chebyshev-type quadratures," Numer. Math., v. 28, 1977, pp. 59-67.

9. W. GAUTSCHI & H. YANAGIWARA, "On Chebyshev-type quadratures," Math. Comp., v. 28, 1974, pp. 125-134.

10. D. K. KAHANER, "Chebyshev-type quadrature formulas," Math. Comp., v. 25, 1970, pp. 571-574.

11. P. RABINOWITZ & N. RICHTER, "Chebyshev-type integration rules of minimum norm," Math. Comp., v. 24, 1970, pp. 831-845.

12. G. SZEGÖ, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, R.I., 1939.